SOlar Radiation Based Established Techniques for aTmospheric Observations (SORBETTO) Winter school took place from February 6th to 10th atESA-ESRIN(European Space Research Institute), in Frascati, Italy and was organized in collaboration with Sapienza University(Roma) and CNR-ISAC (National Research Council – Institute of Atmospheric Sciences and Climate).
SORBETTO is an important training event for young researchers collaborating within the international aerosol’s scientific community (gas and aerosol observations for climatological, meteorological, local and global air pollution studies, remote sensing and in-situ measurements, calibration of satellite measurements…).
Ground-based instruments deployed in Networks such as AERONET are key players to perform high quality observations that contribute to the Validation and Calibration (CAL/VAL) of satellite missions. Instruments such as Sun Sky Lunar Photometers or LiDARs allow to check that information derived from satellite sensors is comparable to ground measurements and thus, to validate their accuracy.
CIMEL Team operating an instrumental demonstration of CE318-T Sun Sky Lunar Photometer at University of Sapienza, 9th 2023.
The instrument show held on Thursday 9th at Sapienza University was the opportunity for students to attend a presentation of various solutions such as CIMEL CE318-T Sun Sky Lunar Photometer, exclusive instrument of NASA Aerosol Network AERONET.
It was a pleasure for CIMEL to attend the event with our great and exclusive Italian Business Partner XEarPro Srl. With 20 years of experience in the field of environmental monitoring, XEarpro Srl contributes in the development of applications and solutions to safeguard the environment around us. We collaborate closely to meet the needs of the Italian scientific community in term of aerosols remote sensing instruments.
Since 2005, the LOA has started the systematic observation of aerosols by LiDAR and has developed a database and an automated real-time data processing system. Its collaboration with CIMEL allowed the creation of the multi-wavelength LILAS LiDAR which was integrated into the European network EARLINET/ACTRIS in 2015.
The LILAS LiDAR was specifically designed and adjusted by CIMEL to meet a specific need of the LOA. The transportable multi-wavelength Raman research LiDAR LILAS offers a significant qualitative and quantitative value on aerosol parameters measured at night and during the day, in particular through its combination with CIMEL sun/sky/lunar photometers.
LILAS also allows the observation of clouds and the obtention water vapor and methane profiles. It also gives access to essential climate variables such as the absorption profile of atmospheric aerosols. Its maximum range can reach 20 km and allows it to study the lower stratosphere which can be useful in case of major volcanic eruption for example.
For the Data treatment, the AUSTRAL (AUtomated Server for the TReatment of Atmospheric Lidars) web server data is the processing tool, which provides real-time quicklooks of the LiDAR Range Corrected Signals (RCS) and Volume Depolarization Ratio (VDR) as well as Klett inversion results (extinction and backscatter coefficient profiles).
To answer the need of various stakeholders, the CE710 LiDAR is a fully customizable high power multi-channel aerosols LiDAR resulting from the collaboration between the LOA, CIMEL and Dr. Igor Veselovskii institute. Depending on the requirements and budgets of each, it exists multiple options to customize the LiDAR. For exemple, the choice of the laser type and the wavelengths, the depolarization options or the Raman options (and many more).
Thanks to its precision in the detection of aerosols, the LILAS CE710 LiDAR has highlighted many atmospheric natural events such as volcanic eruptions (ash) or dust and sand events for example but also biomass burning particles coming from fires. LILAS data and all the LiDAR’s activities between the LOA and CIMEL bring a precious monitoring tool to understand atmospheric phenomenas over France, Europe and worldwide.
Figure 1 : View of LILAS (telescope, laser, and acquisition bay) in vertical view, open roof hatch and example of observed aerosol profiles. LILAS is a transportable multi-wavelength Elastic & Raman LiDAR. It has 3 elastic channels (355, 532 and 1064 nm), 3 Raman channels (387, 407 and 530 nm) and 3 depolarized channels (355, 532 and 1064 nm).
Figure 2: Night time LILAS operation during SHADOW-2 campaign in Senegal (Credits: Q. Hu, LOA)
Figure 3 : Detection of smoke particles injected up to 17 km into the stratosphere by intense pyro-convection generated by the Canadian wildfires of summer 2017 (Hu et al., 2018).
Figure 4: Illustration of the extreme event in October 2017. LiDAR LILAS time series from 16/10/17-16:00 to 17/10/17-06:00 UTC at the Lille site (LOA). (a) The reddest regions indicate a high concentration of particles while the blue regions indicate a very low concentration of particles. (b) Aerosol depolarization which informs us about the shape of the particles and thus their nature, desert or fire particles. Graphic credits Q. Hu, LOA
Hu et al., Aerosol absorption measurements and retrievals in SHADOW2 campaign, ICAC 2017, International Conference on Aerosol Cycle, 21 – 23 Mar, Lille
Hu et al., A test of new approaches to retrieve aerosol properties from Photometer-LiDAR joint measurements, ESA/IDEAS Workshop 2017, Lille, 06-07 Apr 2017
Hu et al., Retrieval of aerosol properties with Sun/Sky-photometer and LiDAR measurements, 28th ILRC, international LiDAR and Radar conference, Bucharest, 25 – 30 June
Hu et al., Lidar measurements with 3-depolarization in Lille, 3rd ACTRIS-2 WP2 Workshop, Delft, 13-17 Nov 2017.
The institution is also present on an international level as it contributes to the programs and activities of the World Meteorological Organization (WMO) which sets standards that meet the shared needs of its Member States.
The knowledge of weather conditions is of huge importance for the aviation industry for example. Landing, taking off and even flying safely depends on weather conditions. The perfect example of this huge importance is the eruption of the volcano Eyjafjallajökull which occurred in April 2010. The Icelandic volcano released a thick ash of smoke which disrupted European air traffic, causing five days of complete interruption of traffic: the largest closure of airspace decreed in Europe, not without financial consequences as it led to considerable losses.
Indeed, volcanic ash which tends to settle in the atmosphere is dangerous as it can be sucked into the plane’s engines, then, melt, and finally clog the jet engines. It can cause air plane accidents.
Actually, CIMEL also provides instrument synergies between Photometers and LiDARs through a unique monitoring software iAAMS, dedicated to the aerosols study and analysis. The obtained parameters are the characterization of aerosol types, the extinction and backscatter profile of mass concentration. Cimel’s AAMS is able to automatically locate, identify and quantify aerosols, layer by layer, day and night.
US west coast forests are more and more in the grip of Wildfires.
Keywords : Aerosols, LiDARs, MicroLiDARs, Monitoring, Earth observation, Remote sensing, Wildfire, Smoke, Ash, Fires, Climate Change, Global Warming, Atmospheric Monitoring, Mobile Solutions, Air Quality
June 28th 2022
According to a recent UN report, forest fires will continue to increase by the end of the century. It is especially the case on the west coast of the United States, which is one of the countries most affected by this phenomenon. Whether they are natural or human-caused, these fires are devastating on a large scale.
The global warming makes the conditions more favorable to the start of fires and their proliferation. The climate change is worsening the impacts by prolonging the fire seasons.
California is the most wildfire-prone state in the United States. In 2021, over 9000 wildfires burned in the Southwestern state ravishing nearly 2.23 million acres.
Fires are a danger to life on the planet: smoke inhalation, soil degradation and water pollution, destruction of the habitats of many species… Not to mention the aggravation of global warming due to the destruction of forests, crucial to absorb the carbon that we emit.
Therefore, on summer 2019, NASA initiated FIREX-AQ mission so as to investigate on fire and smoke from wildfire using several measurement instruments across the world, and especially in the US.
NASA uses satellites combined with airborne and ground-based instruments to decipher the impact of wildfires.
The emissions of ash clouds resulting from the fire can be transported thousands of miles and can have an impact on air quality for example as they are responsible for a large fraction of the US PM2.5 emissions. Due to its microscopic size, PM2.5 is easily inhaled and has the potential to travel deep into our respiratory tracts, it can also remain airborne for long periods.
To date, wildfire outputs are still poorly represented in emission inventories.
The overarching objectives of FIREX-AQ are to:
Provide measurements of trace gas and aerosol emissions for wildfires and prescribed fires in great detail
Relate them to fuel and fire conditions at the point of emission
Characterize the conditions relating to plume rise
Follow plumes downwind to understand chemical transformation and air quality impacts
Assess the efficacy of satellite detections for estimating the emissions from sampled fires
For this purpose, CIMEL provided CE376 micro-LiDARs as well as its network of CE318-T photometers through AERONET. These solutions allowed detailed measurements of aerosols emitted from wildfires and agricultural fires to address science topics and evaluate impacts on local and regional air quality, and how satellite data can be used to estimate emissions more accurately.
Indeed, the synergy of the photometer with the mobile CE376 LiDAR allows profiling the extinction at 2 wavelengths (532, 808 nm) and of the Angstrom Exponent (AE). AE vertical profile and the depolarization capabilities of the CE376 allow identifying the aerosol type (fine/coarse). Below are some results from the FIREX-AQ 2019 mission:
Figure 2: Mapping of smoke vertical and spatial dispersion thanks to mobile LIDAR and photometer measurements by Dr. Ioana POPOVICI.
Figure 3: Mapping and modelization from FIREX-AQ campaign in Western US (2019) by LiDAR CE376.
FIREX-AQ experience proved that we are able to embark compact remote sensing instruments and install them quickly on site to access harsh environments and get close to fire sources, which has not been done before. Actually, it is the first time a LIDAR reaches that close to fire sources in a mountainous region.
Giles, D. M. and Holben, B. and Eck, T. F. and Slutsker, I. and LaRosa, A. D. and Sorokin, M. G. and Smirnov, A. and Sinyuk, A. and Schafer, J. and Kraft, J. and Scully, A. and Goloub, P. and Podvin, T. and Blarel, L. and Proniewski, L. and Popovici, I. and Dubois, G. and Lapionak, A., (2020), Ground-based Remote Sensing of the Williams Flats Fire Using Mobile AERONET DRAGON Measurements and Retrievals during FIREX-AQ, 2020, AGU Fall Meeting Abstracts.
La Palma eruption (Canary Islands) – volcanic plumes tracking by our LiDARs
Keywords : LiDARs, Aerosols, Atmosphere, La Palma, Cumbre Vieja volcano, CE376.
6th October 2021
The Cumbre Vieja volcano on La Palma in the Canary Islands erupted on 19th September for the first time since 1971 resulting in large lava flows and evacuations.
Due to the volcanic eruption, nearly 10 000 tons of sulfur dioxide are released in the atmosphere every day. The risks generated are acid rain and deterioration of air quality which can lead to respiratory problems.
In a few words, this phenomenon is due to the fact that the lava of the volcano which reaches 1000°C meets the sea water which is at around 20°C. Therefore, the sodium chloride contained in the sea breaks down the water into oxygen and hydrogen. However, when hydrogen meets chlorine, they turn into hydrochloric acid which is an extremely dangerous gas.
There are many consequences such as the impact on the air quality which directly concerns the surrounding populations who breathe a toxic smoke harmful for their health.
Air traffic is also strongly impacted as all the flights departing from the island have been cancelled. These disturbances are also due to the lack of instruments measuring aerosols (such as LiDARs) to accurately identify the location of the volcanic ash as well as its characteristics and concentration.
Our CE376 LiDARs in AEMET (Izaña) is tracking plumes of the volcanic ash from the volcanic eruption on La Palma and here are some results to illustrate it.
Figure 1: Quicklook revealing the volcano plumes as captured on 24 September by AEMET in Izaña.
The volcano is propelling air into the atmosphere which meets a thermal inversion – a reversal of the normal behavior of temperature in the troposphere where a layer of hot air sits above a layer of cooler air.
Figure 2: Picture by Virgilio Carreño (Izaña Atmospheric research center, AEMET) showing the interaction of the gas and ash plume of the eruptive column leaving the volcano with the altitude thermal inversion layer of the atmosphere through which the Sahara desert dust transcends.
ESA –New remote sensing tech on satellite for atmospheric measurements
3 SEPTEMBER 2020
On September 3rd 2020, ESA has launched 42 small satellites aboard a Vega rocket from Kourou in French Guiana for the Copernicus Project.
This new type of satellites capable of measuring CO2 emissions to the nearest kilometer and pinpointing their origin.
One of these nanosatellites, PICASSO, carries
remote sensing technology developed which will be used to undertake
measurements in the upper layers of Earth’s atmosphere.
PICASSO stands for Pico-Satellite for Atmospheric and Space Science Observations and it’s the first CubeSat nanosatellite mission of the Royal Belgian Institute for Space Aeronomy.
Weighing only 3.5kg, it carries two measuring instruments for
atmospheric research: A Visible Spectral Imager
for Occultation and Nightglow (VISION) and a system to conduct plasma
measurements in the ionosphere, the Sweeping Langmuir Probe (SLP).
This project of analysis and collection of satellite data will be
carried out over 5 years. The aim is to obtain as much precise information as
possible on the quantification of gases in the air.
We will be able to know exactly the real CO2 emission by country, cities and the origin of gases (if it’s anthropogenic or natural).
Thanks to this initiative, more and more surveillance systems will be
sent into space over the next few years, which will help develop the market for
remote sensing solutions.
Cimel will be part of this development by bringing additional data thanks to its photometers and LiDARs to help calibrate and validate data from satellites.