US-WILDFIRES

US west coast forests are more and more in the grip of Wildfires.

Keywords : Aerosols, LiDARs, MicroLiDARs, Monitoring, Earth observation, Remote sensing, Wildfire, Smoke, Ash, Fires, Climate Change, Global Warming, Atmospheric Monitoring, Mobile Solutions, Air Quality

June 28th 2022

According to a recent UN report, forest fires will continue to increase by the end of the century. It is especially the case on the west coast of the United States, which is one of the countries most affected by this phenomenon. Whether they are natural or human-caused, these fires are devastating on a large scale.

The global warming makes the conditions more favorable to the start of fires and their proliferation. The climate change is worsening the impacts by prolonging the fire seasons.

California is the most wildfire-prone state in the United States. In 2021, over 9000 wildfires burned in the Southwestern state ravishing nearly 2.23 million acres.

Fires are a danger to life on the planet: smoke inhalation, soil degradation and water pollution, destruction of the habitats of many species… Not to mention the aggravation of global warming due to the destruction of forests, crucial to absorb the carbon that we emit.

Therefore, on summer 2019, NASA initiated FIREX-AQ mission so as to investigate on fire and smoke from wildfire using several measurement instruments across the world, and especially in the US.

NASA uses satellites combined with airborne and ground-based instruments to decipher the impact of wildfires.

The emissions of ash clouds resulting from the fire can be transported thousands of miles and can have an impact on air quality for example as they are responsible for a large fraction of the US PM2.5 emissions. Due to its microscopic size, PM2.5 is easily inhaled and has the potential to travel deep into our respiratory tracts, it can also remain airborne for long periods.

To date, wildfire outputs are still poorly represented in emission inventories.

The overarching objectives of FIREX-AQ are to:

  • Provide measurements of trace gas and aerosol emissions for wildfires and prescribed fires in great detail
  • Relate them to fuel and fire conditions at the point of emission
  • Characterize the conditions relating to plume rise
  • Follow plumes downwind to understand chemical transformation and air quality impacts
  • Assess the efficacy of satellite detections for estimating the emissions from sampled fires

For this purpose, CIMEL provided CE376 micro-LiDARs as well as its network of CE318-T photometers through AERONET. These solutions allowed detailed measurements of aerosols emitted from wildfires and agricultural fires to address science topics and evaluate impacts on local and regional air quality, and how satellite data can be used to estimate emissions more accurately.


Figure 1: CE376 micro-LiDAR and CE318-T photometers embarked on a car for FIREX-AQ mobile measurements campaign in Western US (2019).

Indeed, the synergy of the photometer with the mobile CE376 LiDAR allows profiling the extinction at 2 wavelengths (532, 808 nm) and of the Angstrom Exponent (AE). AE vertical profile and the depolarization capabilities of the CE376 allow identifying the aerosol type (fine/coarse). Below are some results from the FIREX-AQ 2019 mission:


Figure 2: Mapping of smoke vertical and spatial dispersion thanks to mobile LIDAR and photometer measurements by Dr. Ioana POPOVICI.   

Figure 3:  Mapping and modelization from FIREX-AQ campaign in Western US (2019) by LiDAR CE376.

 

FIREX-AQ experience proved that we are able to embark compact remote sensing instruments and install them quickly on site to access harsh environments and get close to fire sources, which has not been done before. Actually, it is the first time a LIDAR reaches that close to fire sources in a mountainous region.

Bibliography:

https://www.agora-lab.fr/_files/ugd/376d34_4116704968934963a6aea9b5719f2824.pdf

https://ui.adsabs.harvard.edu/abs/2020AGUFMA191…09G/abstract

https://ui.adsabs.harvard.edu/abs/2019AGUFM.A23R3049H/abstract

https://ui.adsabs.harvard.edu/abs/2020AGUFMA191…09G

Citation:

Giles, D. M. and Holben, B. and Eck, T. F. and Slutsker, I. and LaRosa, A. D. and Sorokin, M. G. and Smirnov, A. and Sinyuk, A. and Schafer, J. and Kraft, J. and Scully, A. and Goloub, P. and Podvin, T. and Blarel, L. and Proniewski, L. and Popovici, I. and Dubois, G. and Lapionak, A., (2020), Ground-based Remote Sensing of the Williams Flats Fire Using Mobile AERONET DRAGON Measurements and Retrievals during FIREX-AQ, 2020, AGU Fall Meeting Abstracts.


VOLCANO MOUNT ASO

Volcano eruption of Mount Aso in Japan – A peak of AOD due to volcanic ashes

Keywords : Photometer, Aerosols Optical Depth, Atmosphere, volcanic eruption, Ashes.

17th November 2021

The volcano of Mount Aso located in the south of the Japanese archipelago on the island of Kyushu erupted this Wednesday, October 20, releasing volcanic ashes up to 3,5 kilometers in the atmosphere during the strongest eruption time.

The volcano had not been active since 2016, local authorities are advising residents to remain vigilant of volcanic ashes and gases on the leeward side of the Nakadake crater. As a matter of fact, the gas and projectiles created a cloud that is denser than the surrounding air and which is an extremely hot ash plume due to the turbulence between the flow and the overlying air.

One of the Cimel CE318-T photometer is currently providing atmospheric aerosols measurements near the volcano eruption. Indeed, the NASA AERONET site based on the offshore platform of Ariake observation tower located in Ariake Sea in Japan, is about 5 kilometers from the coast of Saga city in Ariake Sea.


Figure 1: Google Earth satellite image showing the position of the NASA AERONET Ariake Tower site in relation to the Mount Aso volcano in Kyushu Island (Japan).

Figure 2: Data provided by the Cimel photometer in the Ariake Tower operated by Saga University, depicting Aerosols Optical Depth in the atmosphere.

We have collected data recorded by the Cimel CE318 photometer which measures the Aerosols Optical Depth (AOD) in the atmosphere. We note a peak of the AOD on October 21, a day after the volcanic eruption.

With the addition of Cimel CE376 LiDAR, it would be possible to obtain more high added value parameters such as the characterization, location and the extinction and backscatter profile of mass concentration of this kind of ash aerosols in the atmosphere.

See more on our AAMS solution which consists in the synergy between our LiDARs and our photometers.

VOLCANO LA PALMA

La Palma eruption (Canary Islands) – volcanic plumes tracking by our LiDARs

Keywords : LiDARs, Aerosols, Atmosphere, La Palma, Cumbre Vieja volcano, CE376.

6th October 2021

The Cumbre Vieja volcano on La Palma in the Canary Islands erupted on 19th September for the first time since 1971 resulting in large lava flows and evacuations.

Due to the volcanic eruption, nearly 10 000 tons of sulfur dioxide are released in the atmosphere every day. The risks generated are acid rain and deterioration of air quality which can lead to respiratory problems.

In a few words, this phenomenon is due to the fact that the lava of the volcano which reaches 1000°C meets the sea water which is at around 20°C. Therefore, the sodium chloride contained in the sea breaks down the water into oxygen and hydrogen. However, when hydrogen meets chlorine, they turn into hydrochloric acid which is an extremely dangerous gas.

There are many consequences such as the impact on the air quality which directly concerns the surrounding populations who breathe a toxic smoke harmful for their health.

Air traffic is also strongly impacted as all the flights departing from the island have been cancelled. These disturbances are also due to the lack of instruments measuring aerosols (such as LiDARs) to accurately identify the location of the volcanic ash as well as its characteristics and concentration.

Our CE376 LiDARs in AEMET (Izaña) is tracking plumes of the volcanic ash from the volcanic eruption on La Palma and here are some results to illustrate it.

Figure 1: Quicklook revealing the volcano plumes as captured on 24 September by AEMET in Izaña.

The volcano is propelling air into the atmosphere which meets a thermal inversion – a reversal of the normal behavior of temperature in the troposphere where a layer of hot air sits above a layer of cooler air.

Figure 2: Picture by Virgilio Carreño (Izaña Atmospheric research center, AEMET) showing the interaction of the gas and ash plume of the eruptive column leaving the volcano with the altitude thermal inversion layer of the atmosphere through which the Sahara desert dust transcends.

COVID-19

Research and atmosphere monitoring never stop, even during the COVID-19 pandemic

During the Covid-19 lockdown, the automatic CIMEL micro-pulse LiDARs continued profiling the atmosphere! The CIMEL micro-pulse LiDARs do not require supervised operation or human attendance, allowing recording continuous measurements during emergency situations like the Covid-19 lockdown.

An example of continuous measurements performed by the CE376-GPN micro-pulse LiDAR (532 nm polarized and 808 nm unpolarized) along with the CE318-T Sun/Sky/Lunar photometer at Laboratoire d’Optique Atmosphérique (LOA) in Lille, France are presented below (Fig.1).

Figure 1: Measurements by the CE376-GPN micro-pulse LiDAR along with the CE318-T photometer at LOA in Lille

Since the lockdown in France on 16 March 2020, the CIMEL micro-pulse LiDAR continues measurements, providing long time series of LiDAR data which will allow to study the impact of the lockdown on air quality.

On the examples above, two situations are presented during this period: low fine particle loading from urban background pollution and a desert dust intrusion event on 27 March 2020 (Fig.1, left) and low aerosol loading (fine particles from urban background pollution) on 5 April 2020 (Fig.1, right).

The daily mean AOD at 500 nm recorded by the CE318-T sun photometer was 0.35 for the dust event on 27 March 2020 and 0.1 for the “clean” conditions on 5 April 2020.

The desert dust intrusion event captured in CIMEL LiDAR data at Lille on 27 March 2020 is consistent with the Saharan dust intrusion forecasted by the NMMB/BSC-Dust model (See Fig.2 below), showing shallow dust layers in the 3 – 10 km altitude range (the dotted line on the dust forecast figure represents the location of Lille, France).

Figure 2: NMMB/BSC-Dust model

More recently, the CE376-GPNP micro-pulse LIDAR (Fig. 3) is operating at CIMEL in Paris, France, to provide more continuous data for the aerosols and clouds research community.

Figure 3: Measurements by the CE376-GPN micro-pulse LiDAR along with the CE318-T photometer at CIMEL in Paris

Earth Observation Satellites & Ground Monitoring  Solutions – an essential synergy for Air Quality and Climate Change

Earth Observation Satellites & Ground Monitoring  Solutions – an essential synergy for Air Quality and Climate Change

April 30, 2020

Atmospheric monitoring and climate analysis are strategic missions in order to improve the understanding of air quality dynamics and climate change evolutions. This in turn is a pre-requisite for providing reliable information reports with real data measurements and to help decision makers and end-users to understand the impacts and causes of air pollution with atmospheric impacts and to act upon it.

Satellite data is key for atmospheric and climate monitoring by providing a continuous and global view of the Earth parameters. These data are essential inputs for forecast models by improving their accuracy.

By combining satellite observations with models of the atmosphere and measurements from ground-based instruments, like Cimel Remote Sensing Solutions, it is possible to measure accurately and forecast aerosols (particles suspended in the air), as well as quantify gases level (ozonenitrogen dioxidesulphur dioxidecarbon monoxide…) and several other kind of environmental parameters (planetary boundary layer, water leaving reflectance for Ocean color, solar radiation, water vapor, atmospheric concentration profiles PM2.5/PM10…).

Cimel solutions keep working continuously and automatically, to help the calibration of satellite instruments and validate their data. Furthermore, Cimel is always active to support the various research activities from the worldwide scientific community.

In this video, different aerosols are highlighted by color, including dust (orange), sea salt (blue), nitrates (pink) and carbonaceous (red), with brighter regions corresponding to higher aerosol amounts.

See more on: https://lnkd.in/edPSdrM

Credit: NASA Goddard Space Flight Center

FIREX – AQ Mission

FIREX – AQ Mission

Approximately half of fire emissions in the US are from Northwestern wildfires and half are from prescribed fires that burn mostly in the Southeast US. Wildfires burn slightly more fuel and therefore have overall larger emissions, but prescribed fires dominate the area burned and the number of fires. FIREX-AQ will investigate both wild and prescribed fires. Wildfires generally result in exposures with larger pollution concentrations over larger areas, and cause both local and regional air quality impacts. Their emissions are often transported thousands of miles and can impact large regions of the US at a time. Prescribed fires are usually smaller and less intense than most wildfires but occur more frequently and throughout the whole year. They are usually ignited during periods that minimize population expose and air quality impacts, but can cause regional backgrounds to increase, are generally in closer proximity to populations, and are responsible for a large fraction of the US PM2.5 emissions.

This summer, NOAA and NASA are teaming up on a massive research campaign called FIREX-AQ that will use satellites, aircraft, drones, mobile and ground stations to study smoke from wildfires and agricultural crop fires across the U.S. 

Objective: To improve understanding of wildfire and agricultural fire impacts on air quality, weather, and climate.

Cimel provides a CE376 micro-LiDAR as well as its network of CE318-T photometers through AERONET. These solutions will provide detailed measurements of aerosols emitted from wildfires and agricultural fires to address science topics and evaluate impacts on local and regional air quality, and how satellite data can be used to estimate emissions more accurately.

The Primary Mission Partners are:

Photo: P. Cullis, NOAA / CIRES

COBIACC campaign

COBIACC campaign

Is the rural atmosphere better than elsewhere?

For the entire month of July in Caillouël-Crépigny (France), scientists from the University of Lille and ATMO Hauts-de-France will analyze particles in the air and their impact on health in rural areas.

Since 28 June, more than twenty air pollution measuring devices deployed over 100 m² in the commune of Caillouël-Crépigny (02) may answer this question.

Objectives: To understand the formation and the composition of particles and their precursors in the air in a rural environment during the summer period.

The sensors collect dust from the countryside and nearby dust from forests, roads, buildings and industries in the distance.

The facility consists of four containers installed on 100 m² in the village square of Caillouël-Crépigny. They accommodate twenty-two observation instruments including our Cimel Sun Sky Lunar CE318-T photometer as well as our CE376 micro-LiDAR. These instruments, unique in France, measure the impact of climate change on air quality, biodiversity and health. Thirty researchers take turns night and day to study the chemical modifications of particles during periods of high heat.

This campaign was named COBIACC for Campagne d’OBservation Intensive des Aérosols et précurseurs à Caillouël-Crépigny. It is the result of a partnership between Labex CaPPA, a laboratory of excellence in Lille, CPER Climibio, an environmental project involving 16 laboratories in the Hauts-de-France and Atmo Hauts-de-France, the regional air quality observatory.

Laboratories involved:

The plume of the Icelandic volcano Bardarbunga pollutes the air in the Nord – Pas de Calais

The plume of the Icelandic volcano Bardarbunga pollutes the air in the Nord – Pas de Calais

At the end of September 2014, the Nord – Pas de Calais region suffered an episode of heavy air pollution due to the eruption of the Icelandic volcano Bardarbunga, which has already been going on for more than a month.

The analysis of observations of the volcanic plume, obtained from the ground, thanks to CIMEL photometers and LiDAR, and by satellite, by a team of researchers, engineers and technicians from the Laboratoire d’optique atmosphérique (LOA, CNRS / Université Lille 1) in collaboration with the association for monitoring air quality atmo Nord – Pas de Calais, allowed them to describe the journey, from Iceland, of the volcanic plume and its arrival in the lowest layers of the French atmosphere.

BSC Dust Daily Forecast – AAMS platform

CIMEL AAMS SENEGAL

BSC Dust Daily Forecast – AAMS platform

Aerosol particles are important and highly variable components of the terrestrial atmosphere, and they affect both air quality and climate. In order to evaluate their multiple impacts, the most important requirement is to precisely measure their characteristics.

Remote sensing technologies such as lidar (light detection and ranging) and sun/sky photometers are powerful tools for determining aerosol optical and microphysical properties. In our work, we applied several methods to joint or separate lidar and sun/sky-photometer data to retrieve aerosol properties. The Raman technique and inversion with regularization use only lidar data. The LIRIC (LIdar-Radiometer Inversion Code) and recently developed GARRLiC (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data) inversion methods use joint lidar and sun/sky-photometer data.

Link to the article: click here

Mobile Automatic Aerosol Monitoring Solution project (M-AAMS)

Mobile Automatic Aerosol Monitoring Solution project (M-AAMS)

Mobile Automatic Aerosol Monitoring Solution project (M-AAMS)

The team of scientists left Lille on Monday morning, direction the « Observatoire de Haute Provence » located in Aix-en-Provence.

Along its trip, the car takes continuous measurements of the atmosphere.

Scientists on board follow them and make sure that all the instruments work properly. The car is not only equipped with a wide range of instruments, but also with a camera and an internet connexion: all needed to document the trip of the car in real time!

Follow the adventure of the #CaPPA_Mobile on twitter.

If the system has already been used locally, this time the route extends from Lille to Aix-en-Provence, nearly 1000 km. This experience is part of Ioana Popovici’s thesis work: “Measurement of aerosol variability at high spatial and temporal resolution, in connection with air quality, using an innovative mobile system. »

This time, the vehicle is equipped with a Cimel CE370 LiDAR (532 nm), the mobile PLASMA photometer (340-1600 nm), a granulometer (GRIMM) and a weather station.

The data collected by the mobile system is being analysed and validated. An inter-comparison of the data will be made with the data collected by the fixed measurement stations of the Haute Provence Observatory and the ATMO stations located along the route. Access to online data of the instrumented car.

The science team relied on good weather to collect as much data as possible. Although the sky cleared several times, clear, cloudless sky conditions were not frequently encountered. Under these circumstances it is difficult to carry out solar photometry measurements and to obtain additional information by combining LIDAR with a solar photometer. However, LIDAR has observed the vertical and spatial variability of the atmosphere. The observation was limited to about 2-3 km altitude by the presence of clouds over most of the trip.

A camera fixed on the roof of the car “confirms” the LIDAR measurements, as follows:

Spatio-temporal series LIDAR obtained between Lille and Valence on 28/03/2016