COVID-19

Research and atmosphere monitoring never stop, even during the COVID-19 pandemic

During the Covid-19 lockdown, the automatic CIMEL micro-pulse LiDARs continued profiling the atmosphere! The CIMEL micro-pulse LiDARs do not require supervised operation or human attendance, allowing recording continuous measurements during emergency situations like the Covid-19 lockdown.

An example of continuous measurements performed by the CE376-GPN micro-pulse LiDAR (532 nm polarized and 808 nm unpolarized) along with the CE318-T Sun/Sky/Lunar photometer at Laboratoire d’Optique Atmosphérique (LOA) in Lille, France are presented below (Fig.1).

Figure 1: Measurements by the CE376-GPN micro-pulse LiDAR along with the CE318-T photometer at LOA in Lille

Since the lockdown in France on 16 March 2020, the CIMEL micro-pulse LiDAR continues measurements, providing long time series of LiDAR data which will allow to study the impact of the lockdown on air quality.

On the examples above, two situations are presented during this period: low fine particle loading from urban background pollution and a desert dust intrusion event on 27 March 2020 (Fig.1, left) and low aerosol loading (fine particles from urban background pollution) on 5 April 2020 (Fig.1, right).

The daily mean AOD at 500 nm recorded by the CE318-T sun photometer was 0.35 for the dust event on 27 March 2020 and 0.1 for the “clean” conditions on 5 April 2020.

The desert dust intrusion event captured in CIMEL LiDAR data at Lille on 27 March 2020 is consistent with the Saharan dust intrusion forecasted by the NMMB/BSC-Dust model (See Fig.2 below), showing shallow dust layers in the 3 – 10 km altitude range (the dotted line on the dust forecast figure represents the location of Lille, France).

Figure 2: NMMB/BSC-Dust model

More recently, the CE376-GPNP micro-pulse LIDAR (Fig. 3) is operating at CIMEL in Paris, France, to provide more continuous data for the aerosols and clouds research community.

Figure 3: Measurements by the CE376-GPN micro-pulse LiDAR along with the CE318-T photometer at CIMEL in Paris

Earth Observation Satellites & Ground Monitoring  Solutions – an essential synergy for Air Quality and Climate Change

Earth Observation Satellites & Ground Monitoring  Solutions – an essential synergy for Air Quality and Climate Change

April 30, 2020

Atmospheric monitoring and climate analysis are strategic missions in order to improve the understanding of air quality dynamics and climate change evolutions. This in turn is a pre-requisite for providing reliable information reports with real data measurements and to help decision makers and end-users to understand the impacts and causes of air pollution with atmospheric impacts and to act upon it.

Satellite data is key for atmospheric and climate monitoring by providing a continuous and global view of the Earth parameters. These data are essential inputs for forecast models by improving their accuracy.

By combining satellite observations with models of the atmosphere and measurements from ground-based instruments, like Cimel Remote Sensing Solutions, it is possible to measure accurately and forecast aerosols (particles suspended in the air), as well as quantify gases level (ozonenitrogen dioxidesulphur dioxidecarbon monoxide…) and several other kind of environmental parameters (planetary boundary layer, water leaving reflectance for Ocean color, solar radiation, water vapor, atmospheric concentration profiles PM2.5/PM10…).

Cimel solutions keep working continuously and automatically, to help the calibration of satellite instruments and validate their data. Furthermore, Cimel is always active to support the various research activities from the worldwide scientific community.

In this video, different aerosols are highlighted by color, including dust (orange), sea salt (blue), nitrates (pink) and carbonaceous (red), with brighter regions corresponding to higher aerosol amounts.

See more on: https://lnkd.in/edPSdrM

Credit: NASA Goddard Space Flight Center

MSc Atmospheric Environment

MSc Atmospheric Environment: international master degree

A 2-years program graduating a Master of Science in physics or chemistry of the atmosphere, at the highest level aiming to give intendants a strong background in:

  • Physical and chemical properties of the atmosphere from the molecular to the global scale,
  • Analytical sciences applied to airborne environment,
  • Recent research activities on air pollution and climate changes.

The international Master  « Atmospheric Sciences » is supported by the french Laboratory of Excellence CaPPA which involves large complementary research projects gathering together partner teams with strong scientific qualifications. It leads top-level research activities thanks to the diversity of researchers’ disciplines and its promising research topics.

Training is dedicated to students in physics and chemistry having validated 4 years of study (Master 1st year / Bachelor / 240 ECTS-credits), wishing to follow a specialization in atmospheric sciences to get a strong background in theory and practical works.

A visit to every laboratory involved in the Labex CaPPA is organized, helping students to identify the research topic they want to specialize in.

Strengths of the training
  • Students are immersed in an international environment and all courses are delivered in English.
  • Students from more than 14 nationalities attended to our master since 2013.
  • A master degree in a stimulating scientific environment within the Graduate Program “Science for a Changing Planet“.

Additional documents:
Download the leaflet
MSc presentation (pdf)

From September 2020, this program replaces the former M2 Atmospheric Environment.

You can also find more details about the program on the website: http://www.labex-cappa.fr/master-atmospheric-environment


 

GPS roll-over

GPS roll-over the 3rd of November 2019 on the CE318-T

Important for existing CE318-T customers:

The GPS week counter has been reset the 3rd of November 2019.

Location data reports remained correct while the date and week number are affected. 

The CIMEL CE318-T photometer is impacted by the GPS week counter reset.

It is necessary to use the last version of the firmware for the photometer to remain operational.

Please see the related process bellow to check and update the right firmware version at your earliest convenience to fix the desynchronization.

You will need a computer and to be on site to connect on the control unit and update the firmware.

If you have any question or concern regarding the GPS roll-over issue, feel free to contact us.

Download the procedure here.

N.B.: If you are registered in AERONET, please contact the NASA AERONET team.

Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements

CE318-T Izaña

Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements

August 9, 2019

A comprehensive comparison of more than 70 000 synchronous 1 min aerosol optical depth (AOD) data from three Global Atmosphere Watch precision-filter radiometers (GAW-PFR), traceable to the World AOD reference, and 15 Aerosol Robotic Network Cimel radiometers (AERONET-Cimel), calibrated individually with the Langley plot technique, was performed for four common or “near” wavelengths, 380, 440, 500 and 870 nm, in the period 2005–2015.

The goal of this study is to assess whether, despite the marked technical differences between both networks (AERONET, GAW-PFR) and the number of instruments used, their long-term AOD data are comparable and consistent.

The percentage of data meeting the World Meteorological Organization (WMO) traceability requirements (95 % of the AOD differences of an instrument compared to the WMO standards lie within specific limits) is >92 % at 380 nm, >95 % at 440 nm and 500 nm, and 98 % at 870 nm, with the results being quite similar for both AERONET version 2 (V2) and version 3 (V3). For the data outside these limits, the contribution of calibration and differences in the calculation of the optical depth contribution due to Rayleigh scattering and O3 and NO2 absorption have a negligible impact. For AOD >0.1, a small but non-negligible percentage (∼1.9 %) of the AOD data outside the WMO limits at 380 nm can be partly assigned to the impact of dust aerosol forward scattering on the AOD calculation due to the different field of view of the instruments. Due to this effect the GAW-PFR provides AOD values, which are ∼3 % lower at 380 nm and 2 % lower at 500 nm compared with AERONET-Cimel. The comparison of the Ångström exponent (AE) shows that under non-pristine conditions (AOD >0.03 and AE <1) the AE differences remain <0.1. This long-term comparison shows an excellent traceability of AERONET-Cimel AOD with the World AOD reference at 440, 500 and 870 nm channels and a fairly good agreement at 380 nm, although AOD should be improved in the UV range.

Citation: Cuevas, E., Romero-Campos, P. M., Kouremeti, N., Kazadzis, S., Räisänen, P., García, R. D., Barreto, A., Guirado-Fuentes, C., Ramos, R., Toledano, C., Almansa, F., and Gröbner, J.: Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements, Atmos. Meas. Tech., 12, 4309–4337, https://doi.org/10.5194/amt-12-4309-2019, 2019.

READ THE ARTICLE

Ocean Obs 19

OceanObs'19

OceanObs’19 – An ocean of opportunity

September 16-20, 2019 | Honolulu, Hawaii, USA

Part of the decadal conference series, OceanObs’19 will bring together the ocean observing community ranging from scientists to end users. The conference aims to “improve response to scientific and societal needs of a fit-for-purpose integrated ocean observing system,” to help better understand the environment of the Earth, monitor climate, and inform adaptation strategies as well as the sustainable use of ocean resources.

OceanObs’19 will address the following themes: observing system governance; data and information systems; observing technologies and networks; pollution and human health; hazards and maritime safety; blue economy; discovery; ecosystem health and biodiversity; climate variability and change; and water, food and energy security.

The conference is organized with support from: the US National Aeronautics and Space Administration (NASA); the US National Oceanic and Atmospheric Administration (NOAA); the European Commission; the Global Climate Observing System – an initiative co-sponsored by the World Meteorological Organization (WMO), the Intergovernmental Oceanographic Commission of the UN Educational, Scientific and Cultural Organization (IOC-UNESCO), the UN Environment Programme (UNEP) and the International Science Council (ISC); and other partners.

We are very proud to be a part of this event and look forward to some lively and interesting discussion on a vital subject.

See more on: https://www.oceanobs19.net/

IAOOS

IAOOS – Ice Atmosphere Arctic Ocean Observing System

FEBRUARY 2011 – DECEMBER 2019

The IAOOS Project’s objective is to develop and maintain an automated observation network of ice-tethered platforms across the Arctic Ocean which will simultaneously and independently transmit via satellite, in near real time, the state of the ocean, sea ice and the lower atmosphere.

The project uses a CIMEL microlidar to monitor the atmosphere (T, conso, f optical window).

IAOOS project

The IAOOS equipment is based on 15 autonomous platforms working at any time in the Arctic Ocean, for a period of 7 years. Every platform, made up of 3 elements ocean / atmosphere / sea ice, drifts with the sea ice, the surface winds and the oceanic currents. They are designed to stay at the sea-ice surface and float on the surface of the ocean, with an autonomy of 2 years.

The IAOOS project plans the deployment of 6 platforms per year, following the plan of deployment of the first 15 platforms. Two periods of deployments are planned every year: in spring and in autumn.

Project
Observing, understanding and quantifying climate changes in the Arctic. IAOOS is specifically concerned with the potential for a significantly reduced sea ice cover, and the impacts this might have on the environment and on human activities, both regionally and globally.

Objectives

  • Deploy and maintain an integrated observing system providing simultaneous observations of the ocean, ice and lower atmosphere in real time in the Arctic
  • Complementary to satellite observations
  • Better understanding of interactions
  • Feed operational models
  • Improve predicting capabilities

Equipment on the IAOOS Platforms

  • CTD vertical profilers from 0 to 1000 m depth (conductivity, temperature, depth)
  • Ice Mass Balance (IMB)
  • Temperature and pressure sensors
  • CIMEL microlidars: T, conso, f optical window for atmosphere monitoring
  • Optical depth sensors (ODS)

Partners

IAOOS platform

References

  • Vincent Mariage, Jacques Pelon, Frédéric Blouzon, Stéphane Victori. IAOOS microlidar development and firsts results obtained during 2014 and 2015 arctic drifts . EPJ Web of Conferences, EDP Sciences, 2016, The 27th International Laser Radar Conference (IRLC 27), 119, 02005 (4 p.)(https://hal-insu.archives-ouvertes.fr/insu-01175931)
  • Vincent Mariage, Jacques Pelon, Frédéric Blouzon, Stéphane Victori, Nicolas Geyskens, Nadir Amarouche, Christine Drezen, Antoine Guillot, Michel Calzas, Magali Garracio, Nicolas Wegmuller, Nathalie Sennéchael, and Christine Provost, “IAOOS microlidar-on-buoy development and first atmospheric observations obtained during 2014 and 2015 arctic drifts,” Opt. Express 25, A73-A84 (2017) (https://doi.org/10.1364/OE.25.000A73)
  • Vincent Mariage. Développement et mise en oeuvre de LiDAR embarqués sur bouées dérivantes pour l’étude des propriétés des aérosols et des nuages en Arctique et des forçages radiatifs induits. Physique Atmosphérique et Océanique [physics.ao-ph]. Université Pierre et Marie Curie – Paris VI, 2015. Français. NNT : 2015PA066580

Sunbelt Spectra comparison with Standard ASTM G173: the Chilean case

Sunbelt Spectra comparison with Standard ASTM G173: the Chilean case

December, 2017

Two spectra of solar direct normal irradiance (including circumsolar) are estimated based on spatio-temporal averages of the relevant atmospheric parameters extracted from two different databases: MODIS satellite sensor retrievals and AERONET sun photometer network. The satellite database is used to calculate an average spectrum for the area of the Atacama Desert. The AERONET database is used for two purposes: (i) to apply bias-removal linear methods to correct the MODIS parameters over Atacama, and (ii) to calculate an average local spectrum for the Paranal station. The SMARTS radiative transfer model is used to obtain the three spectra developed in this study. Both the Atacama and Paranal spectra are compared against each other and also to the world reference, ASTM G173. In one of the cases, significant differences are found for short wavelengths. In order to quantify the relative importance of these spectral differences, the propagation of errors due to the use of each spectrum is evaluated for CSP applications over the Atacama Desert, considering twelve different scenarios involving the reflectance, transmittance or absorptance of various materials.

Citation: Marzo, Aitor & Polo, Jesus & Wilbert, Stefan & Gueymard, Chris & Jessen, Wilko & Ferrada, Pablo & Alonso-Montesinos, Joaquín & Ballestrín, Jesús. (2017). Sunbelt Spectra comparison with Standard ASTM G173: the Chilean case. AIP Conference Proceedings. 2033. 10.1063/1.5067195.

READ THE ARTICLE

FIREX – AQ Mission

FIREX-AQ

FIREX – AQ Mission

Approximately half of fire emissions in the US are from Northwestern wildfires and half are from prescribed fires that burn mostly in the Southeast US. Wildfires burn slightly more fuel and therefore have overall larger emissions, but prescribed fires dominate the area burned and the number of fires. FIREX-AQ will investigate both wild and prescribed fires. Wildfires generally result in exposures with larger pollution concentrations over larger areas, and cause both local and regional air quality impacts. Their emissions are often transported thousands of miles and can impact large regions of the US at a time. Prescribed fires are usually smaller and less intense than most wildfires but occur more frequently and throughout the whole year. They are usually ignited during periods that minimize population expose and air quality impacts, but can cause regional backgrounds to increase, are generally in closer proximity to populations, and are responsible for a large fraction of the US PM2.5 emissions.

This summer, NOAA and NASA are teaming up on a massive research campaign called FIREX-AQ that will use satellites, aircraft, drones, mobile and ground stations to study smoke from wildfires and agricultural crop fires across the U.S. 

Objective: To improve understanding of wildfire and agricultural fire impacts on air quality, weather, and climate.

Cimel provides a CE376 micro-LiDAR as well as its network of CE318-T photometers through AERONET. These solutions will provide detailed measurements of aerosols emitted from wildfires and agricultural fires to address science topics and evaluate impacts on local and regional air quality, and how satellite data can be used to estimate emissions more accurately.

The Primary Mission Partners are:

COBIACC campaign

COBIACC campaign

Is the rural atmosphere better than elsewhere?

For the entire month of July in Caillouël-Crépigny (France), scientists from the University of Lille and ATMO Hauts-de-France will analyze particles in the air and their impact on health in rural areas.

Since 28 June, more than twenty air pollution measuring devices deployed over 100 m² in the commune of Caillouël-Crépigny (02) may answer this question.

Objectives: To understand the formation and the composition of particles and their precursors in the air in a rural environment during the summer period.

The sensors collect dust from the countryside and nearby dust from forests, roads, buildings and industries in the distance.

The facility consists of four containers installed on 100 m² in the village square of Caillouël-Crépigny. They accommodate twenty-two observation instruments including our Cimel Sun Sky Lunar CE318-T photometer as well as our CE376 micro-LiDAR. These instruments, unique in France, measure the impact of climate change on air quality, biodiversity and health. Thirty researchers take turns night and day to study the chemical modifications of particles during periods of high heat.

This campaign was named COBIACC for Campagne d’OBservation Intensive des Aérosols et précurseurs à Caillouël-Crépigny. It is the result of a partnership between Labex CaPPA, a laboratory of excellence in Lille, CPER Climibio, an environmental project involving 16 laboratories in the Hauts-de-France and Atmo Hauts-de-France, the regional air quality observatory.

Laboratories involved: