BECOOL Project

becool balloon

Stratéole-2 Becool: micro-LiDARs span the globe aboard hot-air balloons up to 22km high in the stratosphere.

Keywords: Aerosols, LiDARs, monitoring, Earth observation, remote sensing, stratosphere, troposphere.

October 16th 2023

On the night of Wednesday, August 22, 2018, the CIMEL’s micro-LiDAR flew for the first time in a stratospheric balloon for the validation of the project, from Timmins Air Force Base, in Ontario (Canada).

Stratéole-2 is a program of observation of the dynamics of the atmosphere in the intertropical zone developed in partnership between CNRS and CNES. The LATMOS (Atmosphere, environment and space observations laboratory) through its joint laboratory with CIMEL: CIEL), the LMD (Dynamic Meteorology Laboratory), and the CSA (Canadian Spatial Agency) are also collaborating on this project. 

This Stratéole-2 project called BECOOL (BalloonbornE Cirrus and convective overshOOt Lidar) mainly consists in placing CIMEL’s micro-LiDARs in stratospheric hot-air balloons and flying them around the world. The onboard aerosols micro-LiDARs emit lasers downwards, contrary to the initial use (the shots are normally done from the ground towards the atmosphere).

The project Stratéole-2 represents several challenges as CIMEL had to develop, in collaboration with the LATMOS a micro-LiDAR prototype that must correspond to the following standards:

  • Weighting less than 7 kg
  • Consuming less than 10 W
  • Resisting harsh temperature conditions

Indeed, CIMEL’s LiDARs are well known for their robustness and energetic Self-reliance which allows low maintenance: practical when the LiDARs are up to 20km in the stratosphere!

Figure 1: Preparation of a stratospheric balloon before the takeoff

The program uses stratospheric pressurized balloons filled with helium 11 to 13 meters in diameter. During 3 to 4 months, they are carried by the winds all around the tropical belt and are propelled up to 20 kilometers in the atmosphere. Some can travel across 80,000 kilometers around the world (Figure 2).

Figure 2: Stratéole-2 Long-duration balloon flights across the tropics to study atmospheric dynamics and composition / https://webstr2.ipsl.polytechnique.fr/#/

The project includes a total of three measurement campaigns realized between 2018 and 2025. Contrary to the previous one which served as a validation (and in which 2 micro-LiDARs were released), the second campaign was for scientific purposes. It started in mid-October 2021 and ended in April 2022, 3 micro-LiDAR balloons were released into the atmosphere from the Seychelles (Mahé). They collected valuable information which will then be analyzed for the study of atmospheric phenomena and their role in the climate. The third campaign is planned for 2025, with a further 4 micro-LiDAR balloons that will be released.

The objectives are to try to clarify some of the grey areas that hinder our detailed understanding of the atmosphere and its role in the Earth’s climate. BECOOL allows scientists to study atmospheric dynamics and composition such as convection or the dynamic coupling between the troposphere and the stratosphere. Exchanges and air movements between these two atmospheric layers are important and influence the whole planet.

However, the tropical region is difficult to access. Consequently, the classical methods of observation (by satellites, by plane, …) are not enough. This is why using balloons is strategic: they are the only ones able to observe these phenomena in real time and very closely to the atmosphere.

“It is a completely original mode of sampling, which is not obtained otherwise and allows results of unequaled finesse” (A. Hertzog).

Below is a quicklook from a Stratéole-2 micro-LiDAR taken from a balloon.

Figure 3: Quicklook LATMOS-Stratéole 2018

Bibliography:

E. J. Jensen et al, Bull. AMS, 129-143 (2017), M. McGill et al., Appl. Opt., (41) 3725-3734 (2002), J. S. Haase et al., Geophys. Res.L., 39, (2012), P. Zhu et al., Geos. Inst. Meth. and Data Systems, 89-98, (2015) J.-E. Kim et al, Geophys. Res. L. (43), 5895-5901 (2016), S. Davis et al., J.Geophys Res, 115 (2010) S. Solomon et al., Science (327), 1219-1223 (2010) V. Mariage et al., Optics Express 25 (4), A73-A84 (2017) ,G. Di Donfrancesco et al., Appl. Opt. (45) 5701-5708 (2006)  https://doi.org/10.1051/epjconf/202023707003

François Ravetta, Vincent Mariage, Emmanuel Brousse, Eric d’Almeida, Frédéric Ferreira, et al. BeCOOL: A Balloon-Borne Microlidar System Designed for Cirrus and Convective Overshoot Monitoring. EPJ Web of Conferences, EDP Sciences, 2020, The 29th International Laser Radar Conference (ILRC 29), 237, 07003 (2p.). ff10.1051/epjconf/202023707003ff. ffinsu-02896973f

https://www.ecmwf.int/sites/default/files/elibrary/2016/16866-strateole-2-long-duration-stratospheric-balloons-providing-wind-information.pdf

https://presse.cnes.fr/sites/default/files/drupal/202110/default/cp099-2021_-_strateole-2.pdf

https://videotheque.cnes.fr/index.php?urlaction=doc&id_doc=37302&rang=1&id_panier=#

US-WILDFIRES

US west coast forests are more and more in the grip of Wildfires.

Keywords : Aerosols, LiDARs, MicroLiDARs, Monitoring, Earth observation, Remote sensing, Wildfire, Smoke, Ash, Fires, Climate Change, Global Warming, Atmospheric Monitoring, Mobile Solutions, Air Quality

June 28th 2022

According to a recent UN report, forest fires will continue to increase by the end of the century. It is especially the case on the west coast of the United States, which is one of the countries most affected by this phenomenon. Whether they are natural or human-caused, these fires are devastating on a large scale.

The global warming makes the conditions more favorable to the start of fires and their proliferation. The climate change is worsening the impacts by prolonging the fire seasons.

California is the most wildfire-prone state in the United States. In 2021, over 9000 wildfires burned in the Southwestern state ravishing nearly 2.23 million acres.

Fires are a danger to life on the planet: smoke inhalation, soil degradation and water pollution, destruction of the habitats of many species… Not to mention the aggravation of global warming due to the destruction of forests, crucial to absorb the carbon that we emit.

Therefore, on summer 2019, NASA initiated FIREX-AQ mission so as to investigate on fire and smoke from wildfire using several measurement instruments across the world, and especially in the US.

NASA uses satellites combined with airborne and ground-based instruments to decipher the impact of wildfires.

The emissions of ash clouds resulting from the fire can be transported thousands of miles and can have an impact on air quality for example as they are responsible for a large fraction of the US PM2.5 emissions. Due to its microscopic size, PM2.5 is easily inhaled and has the potential to travel deep into our respiratory tracts, it can also remain airborne for long periods.

To date, wildfire outputs are still poorly represented in emission inventories.

The overarching objectives of FIREX-AQ are to:

  • Provide measurements of trace gas and aerosol emissions for wildfires and prescribed fires in great detail
  • Relate them to fuel and fire conditions at the point of emission
  • Characterize the conditions relating to plume rise
  • Follow plumes downwind to understand chemical transformation and air quality impacts
  • Assess the efficacy of satellite detections for estimating the emissions from sampled fires

For this purpose, CIMEL provided CE376 micro-LiDARs as well as its network of CE318-T photometers through AERONET. These solutions allowed detailed measurements of aerosols emitted from wildfires and agricultural fires to address science topics and evaluate impacts on local and regional air quality, and how satellite data can be used to estimate emissions more accurately.


Figure 1: CE376 micro-LiDAR and CE318-T photometers embarked on a car for FIREX-AQ mobile measurements campaign in Western US (2019).

Indeed, the synergy of the photometer with the mobile CE376 LiDAR allows profiling the extinction at 2 wavelengths (532, 808 nm) and of the Angstrom Exponent (AE). AE vertical profile and the depolarization capabilities of the CE376 allow identifying the aerosol type (fine/coarse). Below are some results from the FIREX-AQ 2019 mission:


Figure 2: Mapping of smoke vertical and spatial dispersion thanks to mobile LIDAR and photometer measurements by Dr. Ioana POPOVICI.   

Figure 3:  Mapping and modelization from FIREX-AQ campaign in Western US (2019) by LiDAR CE376.

 

FIREX-AQ experience proved that we are able to embark compact remote sensing instruments and install them quickly on site to access harsh environments and get close to fire sources, which has not been done before. Actually, it is the first time a LIDAR reaches that close to fire sources in a mountainous region.

Bibliography:

https://www.agora-lab.fr/_files/ugd/376d34_4116704968934963a6aea9b5719f2824.pdf

https://ui.adsabs.harvard.edu/abs/2020AGUFMA191…09G/abstract

https://ui.adsabs.harvard.edu/abs/2019AGUFM.A23R3049H/abstract

https://ui.adsabs.harvard.edu/abs/2020AGUFMA191…09G

Citation:

Giles, D. M. and Holben, B. and Eck, T. F. and Slutsker, I. and LaRosa, A. D. and Sorokin, M. G. and Smirnov, A. and Sinyuk, A. and Schafer, J. and Kraft, J. and Scully, A. and Goloub, P. and Podvin, T. and Blarel, L. and Proniewski, L. and Popovici, I. and Dubois, G. and Lapionak, A., (2020), Ground-based Remote Sensing of the Williams Flats Fire Using Mobile AERONET DRAGON Measurements and Retrievals during FIREX-AQ, 2020, AGU Fall Meeting Abstracts.


ATTO project

ATTO: the Amazon Tall Tower Observatory, an Amazon research project

Keywords : ATTO, Aerosols, Photometer, Atmosphere

The Amazon Tall Tower Observatory (ATTO) is the world’s highest research facility located in the middle of the Amazon rainforest in northern Brazil. It is a research site with a 325 meters tower for atmospheric observations.

This joint German-Brazilian project was launched in 2008 in order to further the understanding of the Amazon rainforest and its interaction with the soil beneath and the atmosphere above. This is made possible by recording continuously meteorological, chemical and biological data such as greenhouse gases or aerosols.

Scientists and researchers on site hope to gain insights into how the Amazon interacts with the atmosphere and the soil. This region is very important for the global climate as Saharan dust, biomass smoke from Africa, urban and marine aerosols come from long distances due to the winds. It is vital to get a better understanding of this area for environmental decisions.

On this gigantic tower, a CE318-T photometer is installed at 210 meters from the ground and allows a more efficient calculation of the quantity of aerosols present in the air around this site. The photometer uses NASA’s AERONET calibration system to collect the most reliable data possible.

Cimel photometer on the tower (© NASA AERONET)

At the core of the project is to learn more about biogeochemical cycles, the water cycle and energy fluxes in the Amazon. The goal is to determine their impact on global climate and how they are influenced by the changing climate and land-use change.

ATTO teams strive to close a gap in the global climate monitoring network and want to improve climate prediction models and to recognize the importance of the Amazon within the climate system.

Thanks to our sun-photometer, the scientists on site were able to collect information on daily mean AOD values at 550 nm wavelength.  These data allowed us to analyze the soils present in the atmosphere of the Amazon forest. Here some results of the ATTO project with our sun-photometer between August and September 2019.

Citation: Hassan Bencherif, Nelson Bègue, Damaris Kirsch Pinheiro, David Du Preez, Jean-Maurice Cadet, et al.. Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sensing, MDPI, 2020, Advances in Remote Sensing of Biomass Burning, 12 (22), pp.3846.

Read the article here!

If you want to discover or learn more about this major project, visit: https://www.attoproject.org/

ESA – New remote sensing tech on satellite for atmospheric measurements

VEGA Rocket

ESA – New remote sensing tech on satellite for atmospheric measurements

3 SEPTEMBER 2020

On September 3rd 2020, ESA has launched 42 small satellites aboard a Vega rocket from Kourou in French Guiana for the Copernicus Project.

This new type of satellites capable of measuring CO2 emissions to the nearest kilometer and pinpointing their origin.

One of these nanosatellites, PICASSO, carries remote sensing technology developed which will be used to undertake measurements in the upper layers of Earth’s atmosphere.

PICASSO stands for Pico-Satellite for Atmospheric and Space Science Observations and it’s the first CubeSat nanosatellite mission of the Royal Belgian Institute for Space Aeronomy.

Weighing only 3.5kg, it carries two measuring instruments for atmospheric research: A Visible Spectral Imager for Occultation and Nightglow (VISION) and a system to conduct plasma measurements in the ionosphere, the Sweeping Langmuir Probe (SLP).

This project of analysis and collection of satellite data will be carried out over 5 years. The aim is to obtain as much precise information as possible on the quantification of gases in the air.

We will be able to know exactly the real CO2 emission by country, cities and the origin of gases (if it’s anthropogenic or natural).

Thanks to this initiative, more and more surveillance systems will be sent into space over the next few years, which will help develop the market for remote sensing solutions.

Cimel will be part of this development by bringing additional data thanks to its photometers and LiDARs to help calibrate and validate data from satellites.

Credits: ESA-M. Pedoussaut

MOSAIC

MOSAiC expedition for climateThe world largest polar expedition

1 SEPTEMBER 2019 – 31 OCTOBER 2020

The MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition is the largest polar expedition in history, involving hundreds of scientists from twenty countries for climate researches.

In September 2019, the German research icebreaker Polarstern set sail from Tromsø, Norway, to spend a year drifting through the Arctic Ocean, trapped in ice, to learn more about global warming and climate change.

This expedition is led by atmospheric scientist Markus Rex, and co-led by Klaus Dethloff and Matthew Shupe, MOSAiC is spearheaded by Alfred Wegener Institute, Hekmholtz Center for Polar and Marine Research (AWI).

The goal of the MOSAiC expedition is to require the closest look ever at the Arctic as the epicentre of worldwide warming and to realize fundamental insights that are key to raise understand global climate changes. The objective is to assess the impact of climate change on the region and on the world as a whole and, ultimately, to improve the performance of climate models in order to obtain more realistic projections.

In this expedition, TROPOS uses one of our Photometer (CE318-T) on the Polarstern to assist the scientists by measuring the atmosphere and providing data to help understanding the climatic model of the Arctic. (Follow the TROPOS campaign here).

MOSAiC expedition 2019
Scientific teams during MOSAiC campaign – December 15, 2019 (Alfred-Wegener-Institut / Esther Horvath)

The new and upcoming studies of the Poles are very important to understand our world, allowing new openings to new applications, new opportunities and new solutions for our environment.

All the results of the analysis will produce a flood of measurement data, which will be extremely valuable for the participating researchers and their peers around the globe, and also for humanity as a whole.

The MOSAiC expedition will end on October 12th after 390 days in extreme conditions for the 600 scientists who took turns in this incredible expedition in the Arctic.

Accordingly, the policy for MOSAiC data is based on a spirit of international cooperation, which all expedition participants expressly agree to adhere to. All the data is saved in the MOSAiC database wich is accessible by scientists of each country for detailed analyses and sharing it to the different members, states participating in this incredible and historical adventure.

If you want to follow the expedition, please check the MOSAiC website here or the Polastern Blog.

Image source: Alfred-Wegener-Institut / [Urheber/Fotograf] 

COVID-19

Research and atmosphere monitoring never stop, even during the COVID-19 pandemic

During the Covid-19 lockdown, the automatic CIMEL micro-pulse LiDARs continued profiling the atmosphere! The CIMEL micro-pulse LiDARs do not require supervised operation or human attendance, allowing recording continuous measurements during emergency situations like the Covid-19 lockdown.

An example of continuous measurements performed by the CE376-GPN micro-pulse LiDAR (532 nm polarized and 808 nm unpolarized) along with the CE318-T Sun/Sky/Lunar photometer at Laboratoire d’Optique Atmosphérique (LOA) in Lille, France are presented below (Fig.1).

Figure 1: Measurements by the CE376-GPN micro-pulse LiDAR along with the CE318-T photometer at LOA in Lille

Since the lockdown in France on 16 March 2020, the CIMEL micro-pulse LiDAR continues measurements, providing long time series of LiDAR data which will allow to study the impact of the lockdown on air quality.

On the examples above, two situations are presented during this period: low fine particle loading from urban background pollution and a desert dust intrusion event on 27 March 2020 (Fig.1, left) and low aerosol loading (fine particles from urban background pollution) on 5 April 2020 (Fig.1, right).

The daily mean AOD at 500 nm recorded by the CE318-T sun photometer was 0.35 for the dust event on 27 March 2020 and 0.1 for the “clean” conditions on 5 April 2020.

The desert dust intrusion event captured in CIMEL LiDAR data at Lille on 27 March 2020 is consistent with the Saharan dust intrusion forecasted by the NMMB/BSC-Dust model (See Fig.2 below), showing shallow dust layers in the 3 – 10 km altitude range (the dotted line on the dust forecast figure represents the location of Lille, France).

Figure 2: NMMB/BSC-Dust model

More recently, the CE376-GPNP micro-pulse LIDAR (Fig. 3) is operating at CIMEL in Paris, France, to provide more continuous data for the aerosols and clouds research community.

Figure 3: Measurements by the CE376-GPN micro-pulse LiDAR along with the CE318-T photometer at CIMEL in Paris

GPS roll-over

GPS roll-over the 3rd of November 2019 on the CE318-T

Important for existing CE318-T customers:

The GPS week counter has been reset the 3rd of November 2019.

Location data reports remained correct while the date and week number are affected. 

The CIMEL CE318-T photometer is impacted by the GPS week counter reset.

It is necessary to use the last version of the firmware for the photometer to remain operational.

Please see the related process bellow to check and update the right firmware version at your earliest convenience to fix the desynchronization.

You will need a computer and to be on site to connect on the control unit and update the firmware.

If you have any question or concern regarding the GPS roll-over issue, feel free to contact us.

Download the procedure here.

N.B.: If you are registered in AERONET, please contact the NASA AERONET team.

IAOOS

IAOOS – Ice Atmosphere Arctic Ocean Observing System

FEBRUARY 2011 – DECEMBER 2019

The IAOOS Project’s objective is to develop and maintain an automated observation network of ice-tethered platforms across the Arctic Ocean which will simultaneously and independently transmit via satellite, in near real time, the state of the ocean, sea ice and the lower atmosphere.

The project uses a CIMEL microlidar to monitor the atmosphere (T, conso, f optical window).

IAOOS project

The IAOOS equipment is based on 15 autonomous platforms working at any time in the Arctic Ocean, for a period of 7 years. Every platform, made up of 3 elements ocean / atmosphere / sea ice, drifts with the sea ice, the surface winds and the oceanic currents. They are designed to stay at the sea-ice surface and float on the surface of the ocean, with an autonomy of 2 years.

The IAOOS project plans the deployment of 6 platforms per year, following the plan of deployment of the first 15 platforms. Two periods of deployments are planned every year: in spring and in autumn.

Project
Observing, understanding and quantifying climate changes in the Arctic. IAOOS is specifically concerned with the potential for a significantly reduced sea ice cover, and the impacts this might have on the environment and on human activities, both regionally and globally.

Objectives

  • Deploy and maintain an integrated observing system providing simultaneous observations of the ocean, ice and lower atmosphere in real time in the Arctic
  • Complementary to satellite observations
  • Better understanding of interactions
  • Feed operational models
  • Improve predicting capabilities

Equipment on the IAOOS Platforms

  • CTD vertical profilers from 0 to 1000 m depth (conductivity, temperature, depth)
  • Ice Mass Balance (IMB)
  • Temperature and pressure sensors
  • CIMEL microlidars: T, conso, f optical window for atmosphere monitoring
  • Optical depth sensors (ODS)

Partners

IAOOS platform

References

  • Vincent Mariage, Jacques Pelon, Frédéric Blouzon, Stéphane Victori. IAOOS microlidar development and firsts results obtained during 2014 and 2015 arctic drifts . EPJ Web of Conferences, EDP Sciences, 2016, The 27th International Laser Radar Conference (IRLC 27), 119, 02005 (4 p.)(https://hal-insu.archives-ouvertes.fr/insu-01175931)
  • Vincent Mariage, Jacques Pelon, Frédéric Blouzon, Stéphane Victori, Nicolas Geyskens, Nadir Amarouche, Christine Drezen, Antoine Guillot, Michel Calzas, Magali Garracio, Nicolas Wegmuller, Nathalie Sennéchael, and Christine Provost, “IAOOS microlidar-on-buoy development and first atmospheric observations obtained during 2014 and 2015 arctic drifts,” Opt. Express 25, A73-A84 (2017) (https://doi.org/10.1364/OE.25.000A73)
  • Vincent Mariage. Développement et mise en oeuvre de LiDAR embarqués sur bouées dérivantes pour l’étude des propriétés des aérosols et des nuages en Arctique et des forçages radiatifs induits. Physique Atmosphérique et Océanique [physics.ao-ph]. Université Pierre et Marie Curie – Paris VI, 2015. Français. NNT : 2015PA066580

FIREX – AQ Mission

FIREX – AQ Mission

Approximately half of fire emissions in the US are from Northwestern wildfires and half are from prescribed fires that burn mostly in the Southeast US. Wildfires burn slightly more fuel and therefore have overall larger emissions, but prescribed fires dominate the area burned and the number of fires. FIREX-AQ will investigate both wild and prescribed fires. Wildfires generally result in exposures with larger pollution concentrations over larger areas, and cause both local and regional air quality impacts. Their emissions are often transported thousands of miles and can impact large regions of the US at a time. Prescribed fires are usually smaller and less intense than most wildfires but occur more frequently and throughout the whole year. They are usually ignited during periods that minimize population expose and air quality impacts, but can cause regional backgrounds to increase, are generally in closer proximity to populations, and are responsible for a large fraction of the US PM2.5 emissions.

This summer, NOAA and NASA are teaming up on a massive research campaign called FIREX-AQ that will use satellites, aircraft, drones, mobile and ground stations to study smoke from wildfires and agricultural crop fires across the U.S. 

Objective: To improve understanding of wildfire and agricultural fire impacts on air quality, weather, and climate.

Cimel provides a CE376 micro-LiDAR as well as its network of CE318-T photometers through AERONET. These solutions will provide detailed measurements of aerosols emitted from wildfires and agricultural fires to address science topics and evaluate impacts on local and regional air quality, and how satellite data can be used to estimate emissions more accurately.

The Primary Mission Partners are:

Photo: P. Cullis, NOAA / CIRES

COBIACC campaign

COBIACC campaign

Is the rural atmosphere better than elsewhere?

For the entire month of July in Caillouël-Crépigny (France), scientists from the University of Lille and ATMO Hauts-de-France will analyze particles in the air and their impact on health in rural areas.

Since 28 June, more than twenty air pollution measuring devices deployed over 100 m² in the commune of Caillouël-Crépigny (02) may answer this question.

Objectives: To understand the formation and the composition of particles and their precursors in the air in a rural environment during the summer period.

The sensors collect dust from the countryside and nearby dust from forests, roads, buildings and industries in the distance.

The facility consists of four containers installed on 100 m² in the village square of Caillouël-Crépigny. They accommodate twenty-two observation instruments including our Cimel Sun Sky Lunar CE318-T photometer as well as our CE376 micro-LiDAR. These instruments, unique in France, measure the impact of climate change on air quality, biodiversity and health. Thirty researchers take turns night and day to study the chemical modifications of particles during periods of high heat.

This campaign was named COBIACC for Campagne d’OBservation Intensive des Aérosols et précurseurs à Caillouël-Crépigny. It is the result of a partnership between Labex CaPPA, a laboratory of excellence in Lille, CPER Climibio, an environmental project involving 16 laboratories in the Hauts-de-France and Atmo Hauts-de-France, the regional air quality observatory.

Laboratories involved: